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Figure 1. The first column presents visually compelling AI-generated images. However, a closer examination reveals fundamental

inconsistencies, such as those in shadow alignment (second column) and vanishing point accuracy (fourth column). Our model’s analysis,

shown in the third and fifth columns, detects these shadow and perspective geometry errors. We show that these errors are systematic and

can be used to identify generated images.

Abstract

Generative models can produce impressively realistic im-

ages. This paper demonstrates that generated images have

geometric features different from those of real images. We

build a set of collections of generated images, prequalified to

fool simple, signal-based classifiers into believing they are

real. We then show that prequalified generated images can be

identified reliably by classifiers that only look at geometric

properties. We use three such classifiers. All three classifiers

are denied access to image pixels, and look only at derived

geometric features. The first classifier looks at the perspec-

tive field of the image, the second looks at lines detected in

the image, and the third looks at relations between detected

objects and shadows. Our procedure detects generated im-

ages more reliably than SOTA local signal based detectors,

*equal contribution

for images from a number of distinct generators. Saliency

maps suggest that the classifiers can identify geometric prob-

lems reliably. We conclude that current generators cannot

reliably reproduce geometric properties of real images.

1. Introduction

Both StyleGAN [21–23] and diffusion models [35–37] are

renowned for generating images that are strikingly similar

to real-world photographs and consistently fool people. But,

as we show, generated images have distinctive geometric

features, likely from a failure to fully capture projective

geometry.

Chen et al. [9], Zhan et al.[48], and Bhattad et al.[5]

have shown generative models implicitly capture the com-

plex scene properties, including normals, depth, albedo, and

support relations. These works suggests these models “un-
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derstand” geometry, which would be useful for rendering 3D

scenes. Our detailed, population-level analysis of generated

images suggests generative models [1, 3, 4, 11, 31] cannot

fully translate this “understanding” into accurate geometry.

Specifically, we demonstrate that generative models produce

images with lines that differ from those of real images (likely

due to problems aligning vanishing points); that generative

models produce images with perspective fields that are un-

like those of real images; and that object-shadow relations

in generated images differ reliably from those in real images.

We use advanced pretrained models (Line Segment Detec-

tion [30]; Perspective Fields [20]; and PointNet [33]) that

inspect geometric representations to distinguish between real

and generated images.

To ensure our findings’ integrity and accuracy, we adopt

a rigorously designed data curation process. This critical

step involves meticulously filtering out any biases related to

color, texture, and local features within our test set. Such

precision in data selection is crucial to isolate and accurately

assess the subtle, yet significant, inconsistencies in projective

geometry and illumination present in generated images. This

careful approach ensures that our results are not obscured

by common artifacts typically found in generated images,

thereby enhancing the reliability of our conclusions. Our

contributions are:

• Unearthing Geometric Discrepancies: We present a

comprehensive analysis that goes beyond existing liter-

ature to both demonstrate and quantify geometric discrep-

ancies produced by current generative models.

• Data curation: We offer a data curation process that can

be used to hone in on generative model errors.

• Broadening the Scope of Model Assessment: Our ap-

proach offers an alternative method for evaluating models:

do they get projective geometry right?

2. Related Work

Generative Models: The advancement of generative mod-

els, particularly in creating visually realistic images, marks a

significant milestone in computer vision. Pioneering efforts

by Karras et al. [21–23] with StyleGAN, and the emergence

of diffusion models [35–37], have set new benchmarks in

realism. These models, used in diverse fields from art to data

augmentation, have yet to fully grasp the nuances of projec-

tive geometry, which is the focus of our analysis, primarily

using open Stable Diffusion models.

Geometric Understanding in Generative Models: While

studies like Chen et al. [9], Zhan et al. [48], and Bhattad et

al. [5] demonstrate these models’ potential in understanding

scene geometry, our work diverges by scrutinizing the gen-

erated images themselves, examining their adherence to the

principles of projective geometry and illumination, rather

than analyzing learned features.

Detecting Generated Images: The realism of modern gen-

erative models has made image forensics increasingly chal-

lenging. Traditional methods focused on detecting synthetic

images using signals like resampling artifacts [32] and JPEG

quantization [2]. Kee et al. [24] introduced a geometric

technique for detecting shadow inconsistencies, paralleling

our pursuit of physical realism. However, our work extends

beyond identifying photo manipulation to evaluating the

overall perspective geometry and illumination consistency

in images from generative models.

Zhang et al.’s work [12] focuses on detecting AI-

generated images using diverse generative models and on-

line training for future model adaptation. Our research, in

contrast, assesses the projective geometry in these images,

examining their ability to render scenes with accurate per-

spective and illumination. Boháček et al. [6], while detecting

geometric inconsistencies related to shadows, align with our

interest in physical realism. However, we delve deeper, thor-

oughly evaluating perspective geometry and illumination in

generative models for a more comprehensive understanding

of their geometric accuracy.

The rise of deep generative methods has steered image

forensics towards using discriminative methods to detect

synthetic content [7, 13, 18, 41, 42, 47, 49]. These advance-

ments align with our objective of analyzing the physical

and geometrical congruence of generated images. However,

our work goes a step further by critically assessing whether

generative models fundamentally understand and accurately

replicate projective geometry, rather than simply distinguish-

ing between real and synthetic images. This deeper level of

analysis aims to unveil the intricacies and limitations of cur-

rent models in faithfully rendering geometrically coherent

images.

Evaluation Metrics: Traditional metrics like the Inception

Score (IS) [38] and Fréchet Inception Distance (FID) [17]

focus on pixel-level fidelity. The emergence of CLIP-based

scores [16, 34] and DIRE [44] offers a semantic perspective.

In contrast, our approach, distinct in its focus on perspec-

tive geometry and illumination consistency, seeks to ensure

comprehensive realism, bridging the gap between visual and

physical authenticity.

Recent studies like Davidsonian Scene Graph [10] and

ImagenHub [25] address fine-grained evaluation inconsis-

tencies, while the HEIM benchmark [26] assesses models

across multiple aspects. Our work complements these by pro-

viding an in-depth evaluation of the physical and geometric

realism of images generated by state-of-the-art models.

3. Background on Projective Geometry

Projective geometry is a mathematical framework that en-

ables the accurate representation of three-dimensional spaces

in two-dimensional images. It provides the rules for perspec-

tive, which are crucial for creating realistic scenes with depth

and spatial orientation [14]. In this section, we will examine
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the common inconsistencies that may arise during image

synthesis according to projective geometry. Our evaluation

framework is intended to detect and measure these discrep-

ancies, which are essential for evaluating the realism and

physical plausibility of generated images.

Inconsistent Vanishing Points. Vanishing points are fun-

damental to capturing the essence of perspective in images.

They should align with the direction of parallel lines con-

verging at a distance. Generated images often exhibit in-

consistencies where these lines do not meet at the correct

vanishing points, leading to a distorted sense of perspective.

Lighting and Shadow Inconsistencies. Accurate shadows

are essential for reinforcing the position and shape of objects

within a scene. Discrepancies in shadow direction, length,

and softness can indicate a misalignment with the scene’s

light sources, disrupting the image’s three-dimensionality.

Scale Discrepancies. The principle of size constancy dic-

tates that objects of the same size should appear smaller as

their distance from the observer increases. Generated im-

ages sometimes fail to maintain this scaling, resulting in a

compromised depth perception.

Distortion of Geometric Figures. Geometric figures should

maintain their shape when projected onto the image plane,

barring intentional perspective distortion. Errors in this pro-

jection can result in circles appearing as ellipses or squares

as trapezoids, indicating a flawed perspective rendering.

Depth Cues. Depth perception in images is conveyed

through cues such as overlapping, texture gradients, and

relative size. Misrepresentation of these cues can lead to an

unnatural spatial arrangement that the human eye can readily

detect as artificial.

Our evaluation framework, detailed in the subsequent sec-

tions, is designed to rigorously test generated images against

these projective geometry principles. While a comprehen-

sive evaluation of projective geometry would consider all the

aforementioned inconsistencies, our framework prioritizes

the detection of inconsistent vanishing points and lighting

and shadow inconsistencies. These elements are particularly

telling indicators of an image’s projective geometry realism

and are often the most challenging for generative models to

replicate accurately.

4. Dataset Curation via Multi-Stage Filtering

Our data curation process begins with the selection of

real images, subsequently captioned using a recent state-

of-the-art (SOTA) method, where we utilize the ViT-bigG-

14/laion2b s39b b160k model [19] along with the BLIP-2

[27] model. These captioned images are then processed

through the Stable Diffusion-XL model [31]. This initial

phase establishes a robust dataset where real and generated

images are aligned based on common captions. Such align-

ment is crucial for a thorough and equitable evaluation of

projective geometry nuances in generated images, ensuring
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Figure 2. The diagram illustrates the sequential flow of our data

curation methodology. Initially, images undergo captioning [27]

[19], followed by processing through Stable Diffusion-XL [31].

Post-generation, these images are subjected to CNN Detection [42]

and then filtered using a Histogram-Based Logistic Regression

model. Subsequently, a ResNet50 [15] Prequalifier refines the

selection, resulting in the final curated dataset.

that our dataset is ideally suited for examining the subtle

aspects of image generation.

Transitioning from this initial phase, the integrity of our

evaluation framework becomes paramount. To guarantee its

robustness, we employ a multi-stage data curation process.

This meticulous procedure is tailored to eliminate biases that

may arise from small signal artifacts, color distribution, or

textural features—elements often exploited by conventional

CNN detectors. Systematically filtering out images based on

these criteria allows us to isolate those that exhibit subtle yet

essential inconsistencies in projective geometry and illumi-

nation. This rigorous approach ensures that our evaluation is

not skewed by superficial artifacts, but rather, it becomes a

true test of a generative model’s grasp of complex physical

and geometric principles. The following sub-sections detail

each stage of this multi-stage filtering process and our data

curation process is summarized in Figure 2.

4.1. Off­the­shelf CNNDetector Validation

Our process begins with the generation of scenes using the

Stable Diffusion XL model, each scene crafted from real

images paired with descriptive captions. These generated

images are subjected to the CNNDetector [42], a CNN-based

state-of-the-art detector. Surprisingly, the CNNDetector

could not distinguish any of the generated scenes from Sta-

ble Diffusion-XL, indicating a level of visual fidelity that

surpasses conventional detection capabilities.

4.2. Filtering Using Color Histograms

The next step in refining our dataset involves a logistic re-

gression model that leverages color histogram statistics to

differentiate between real and synthetic images. This model

analyzes the color distribution within each image and assigns

a probability of it being generated based on learned patterns

in these distributions.
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Table 1. Statistical overview of the Data Curation and Filtering Process: We present the distribution of real and generated images for

indoor and outdoor datasets through consecutive stages of our data curation pipeline. Starting with large sets, we apply CNN detection and

LR histogram filtering to refine the datasets, significantly reducing the number of generated images and highlighting the effectiveness of

these preliminary filters. The ResNet50 Prequalifier further narrows down the datasets, creating an ‘Unconfident Set’ for images with low

classifier certainty and a ‘Misclassified Subset’ for images incorrectly labeled by the classifier. These rigorously curated sets are instrumental

for our subsequent analysis, concentrating on projective geometry while mitigating the influence of signal cues. The datasets for each

prequalifier—indoor, outdoor, and combined—are prepared separately to tailor the models to their specific contexts.

Indoor Real Indoor Generated Outdoor Real Outdoor Generated Combined Real Combined Generated

Total Images 400,000 400,000 125,000 125,000 525,000 525,000

Post CNN Detection & LR Histogram Filtering

Remaining Images 53,974 53,974 8,316 8,316 62,290 62,290

Training and Test Sets

Training Set Size 280,000 280,000 95,000 95,000 375,000 375,000

Validation Set Size 48,000 48,000 17,000 17,000 65,000 65,000

Test Set Size 53,974 53,974 8,316 8,316 62,290 62,290

Post ResNet50 Prequalifier

Unconfident Set 10,078 19,588 6,399 5,249 10,511 16,739

Misclassified Subset 3,366 10,928 3,420 1,910 3,535 8,132

This stage effectively filters out approximately 90% of

the dataset, highlighting the predictive power of color his-

tograms in identifying synthetic content that a CNN detector

was otherwise unable to detect. We pool the misclassified set

at this stage as our full test set and all other detected images

are pooled into our training and validation test set.

4.3. Texture Consistency Examination

As we progress through our data curation process, we in-

tegrate a ResNet50 [15] classifier to serve as a prequali-

fier, drawing on methods established in CNNDetection [42]

and the recent online detection of AI-generated images [13].

This prequalifier, though analyzing images in their entirety,

demonstrates a fine-tuned sensitivity to both local distortions

and textural inconsistencies—attributes attributable to the

architectural depth and sophistication of ResNet50.

The ResNet50 classifier is shown to be good at distin-

guishing the intricate textural features that differentiate real

images from generated ones, capitalizing on the local and

global discrepancies introduced by generative processes. It

evaluates the overall texture consistency and coherency of

the image, offering a holistic yet detail-oriented perspective.

5. Analyzing Projective Geometry

After curating the dataset, we meticulously analyze the unfil-

tered images, consisting of 10,928 indoor and 1,910 outdoor

scenes. These images have successfully passed prior filtering

stages; that is they are detected as real images. We then sub-

ject them to a thorough evaluation for geometric and shadow

inconsistencies, focusing on their conformity to projective

geometry principles. This process ensures that our dataset

tests the models rigorously, challenging them to replicate

not only surface details (color or texture inconsistencies) but

also the underlying geometric correctness and photometric

accuracy of generated images.

It must be noted that projective geometry inconsistencies

are prevalent in most of the generated images, yet they often

escape detection by conventional analysis. Our approach

focuses on the “hard set”—challenging scenarios where the

prequalifying classifier, trained directly on images, either

operates at the chance (the unconfident test set) or inversely

misclassifies real and generated images (the misclassified

test set). This distinction is critical, as it allows us to rig-

orously test our models, which, unlike the prequalifier, do

not have direct access to the images. Trained solely on ge-

ometric abstractions and projective cues extracted from the

images, our models are competent at detecting subtle but

decisive inaccuracies that simple texture artifacts cannot ac-

count for. This level of abstraction in training guarantees that

our models focus on the fundamental aspects of projective

geometry, identifying errors that could significantly impact

the practical applicability of generated visuals in real-world

contexts. Below, we detail different models that comprise

our approach.

5.1. Line Segment Cues

Our method for assessing the projective geometry in gener-

ated images starts by identifying key structural lines within

each image using a Deep Learning-based Line Segment De-

tector (Deep LSD) [30]. These lines are crucial for our

analysis as they indicate how well the generated images ad-

here to the rules of perspective. To classify the images based

on these line segments, we train a PointNet-like architec-

ture [33] known for its ability to handle unordered data sets

like the ones we encounter with line segments. This model

is trained to recognize patterns that help differentiate real im-

ages from generated ones by understanding the arrangement
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Figure 3. ROC Curves Assessing Projective Geometry Cues in Generated Images by Stable Diffusion XL. We trained separate models for

indoor scenes, outdoor scenes, and a combination of indoor and outdoor scenes. In the full test set (a), (d), (g), our line segment classifier

was found to be more accurate (with AUCs of 0.98, 0.92, and 0.97) compared to the prequalifier (with AUCs of 0.93, 0.72, and 0.96).

Prequalification helps to determine whether the methods are using signal cues or not. Our results show that they are not, as demonstrated

by (b), (c), (e), (f), (h), and (i). For the unconfident test set, where the prequalifier has an AUC of 0.47 (b), 0.50 (e), and 0.54 (h) for

indoor, outdoor, and combined partition, our classifiers can still accurately identify the generated images with high AUCs. Similarly, for the

misclassified test set, where the prequalifier has an AUC of 0.00, our classifiers remain reliable. We conclude that generated images contain

geometric structures not seen in real images, and these structures very reliably identify generated images.

and consistency of these lines.

Unlike traditional models that may require the data to be

in a specific format, PointNet is flexible and considers each

line segment without the need for pre-sorting, making it par-

ticularly suited for our geometric analysis. It assigns a score

representing the likelihood that an image is real based on

the spatial arrangement of its lines. By analyzing the scores

from PointNet, we can determine the model’s proficiency

in detecting subtle discrepancies in line arrangements that

often indicate a generated image.

5.2. Perspective Field Cues

Our framework’s second model utilizes Perspective

Fields [20], vector fields that encode the spatial orienta-

tion of pixels in relation to vanishing points and the horizon.

These dense fields could be instrumental in assessing the
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Generated Image Object-Shadow (OS) OS GradCam Perspective Fields Perspective Fields GradCam

Figure 4. Grad-CAM can be applied to our Object-Shadow and Perspective Field classifiers. Doing so suggests that the high AUCs of

Figure 3 are vested in real geometric errors. Here we show indoor scenes. The first column displays images generated by Stable Diffusion-XL.

The second column overlays detected object-shadow pairs from [43], highlighting the model’s ability to identify these features. The third

column applies Grad-CAM to our Object-Shadow classifier. This shows areas most diagnostic of synthetic generation. Note: in the first row,

the shadow cast by the ottoman is in the wrong direction and Grad-CAM identifies this error as diagnostic for our classifier; in the second

row, the Grad-CAM weights suggest a shadow problem at the left side chair, which is difficult to check but plausible; in the third row, the

shadow cast by the coffee table is in the wrong direction and Grad-CAM identifies this error as diagnostic. The fourth column shows the

Perspective Fields of [20], and the fifth column shows Grad-CAM when applied to our Perspective Fields classifier. Note: in the first row,

Grad-CAM weights identify an oddly oriented line in the top left corner; in the second row, Grad-CAM weights identify a problem with the

top of the cupboard on the left, which is difficult to confirm but plausible; in the third row, Grad-CAM weights identify a visible problem

with the blind on the left. Best viewed on screen.

projective geometry of images. We use a pretrained model to

generate Perspective Fields from single images, which serve

as a basis for understanding the scene’s geometric structure.

We then train a ResNet50 classifier on these fields to dif-

ferentiate between real and generated images, focusing on

anomalies in projective geometry. The classifier evaluates

the consistency of Perspective Fields with projective geome-

try principles, scoring images on their geometric plausibility.

This method allows for a precise and focused evaluation

of projective geometry in generated images, enhancing the

detection of subtle inconsistencies.

5.3. Object­Shadow Cues

The third model in our framework addresses the illumination

aspect by examining object-shadow relationships. Shadows

are inherently tied to the shapes that cast them, following

the principles of projective geometry that dictate how three-

dimensional forms are translated onto a two-dimensional

plane. The direction, length, and shape of a shadow should

be consistent with the light source’s position and the geome-

try of the casting object. Any inconsistency in this alignment

can reveal the synthetic nature of an image.

To detect such inconsistencies, we analyze the shadows

in relation to their corresponding objects and the presumed

light source direction. We employ an object-shadow instance

detection algorithm [43] to identify shadows and then use

geometric heuristics to evaluate their plausibility given the

objects and their orientation in the scene. This is accom-

plished by training a ResNet50 classifier on binary masks of

object and shadow instances. The consistency of these shad-

ows with the objects is scored, and images with implausible

shadows are marked as likely generated.
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Generated Image Object-Shadow (OS) OS GradCam Perspective Fields Perspective Fields GradCam

Figure 5. Grad-CAM results for outdoor scenes, after the model of Figure 4. The first column displays images generated by Stable

Diffusion-XL. Note: in the first row, the cars cast shadows in different directions and Grad-CAM identifies this error as diagnostic; in

the second row, two cars in front cast shadows in different directions and Grad-CAM identifies this error as diagnostic; in the third row,

Grad-CAM identifies the (very odd) structure of the buildings near the vanishing point as a problem, based on perspective field distortion.

Generated Image Object-Shadow (OS) OS GradCam Perspective Fields Perspective Fields GradCam

Figure 6. Our projective geometry classifiers identify distinct types of problems. The top row shows an example that was classified real by

the Object-Shadow classifier, but correctly identified as generated by the Perspective Fields classifier. The shadow cast by the person appears

realistic; but, as the Perspective Fields GradCAM identifies, the shelf on the top left has problematic geometry. The bottom row shows

an example that was correctly identified as generated by the Object-Shadow classifier but was classified as real by the Perspective Fields

classifier. Here the perspective effects in the image appear inoffensive, but the two chairs are casting shadows from different light sources, as

the Grad-CAM weights correctly show.
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Figure 7. Evaluating the effectiveness of our classifiers in distinguishing projective geometry cues in indoor images generated by various

models. We use our classifiers trained on the Stable Diffusion XL dataset and evaluate their performances on test sets generated by Dall-E 3

(a), Kandinsky-v2 (b), and DeepFloyd (c), using the same text prompts from the “unconfident” Stable Diffusion XL generated test set as

described in Table 1. The Prequalifier’s AUC scores were notably lower across all test sets, registering AUCs of 0.36 for Dall-E 3, 0.59 for

Kandinsky-v2, and 0.27 for DeepFloyd. In the Dall-E 3 Test Set, Line Segment Cues classifier showed the highest accuracy with an AUC of

0.98, while Object-Shadow Cues and Perspective Fields Cues also showed decent accuracy with AUCs of 0.76 and 0.70, respectively. In the

Kandinsky-v2 Test Set, Line Segment Cues and Perspective Fields Cues demonstrated robust detection with AUCs of 0.95 and 0.94, while

Object-Shadow cues were detected with an AUC of 0.80. The DeepFloyd Test Set seems to have smaller geometric distortion, with Line

Segment Cues, Object-Shadow Cues, and Perspective Fields Cues achieving AUCs of 0.74, 0.65, and 0.65, respectively, outperforming

the Prequalifier (AUC of 0.27). In the Adobe Firefly test set, the Line Segment Cues classifier demonstrates the highest discrimination

ability with an AUC of 0.93, closely followed by Object-Shadow Cues with an AUC of 0.80, while the Prequalifier lags behind with an

AUC of 0.06. Similarly, in the PixArt-α Indoor Test Set, Line Segment Cues lead with an AUC of 0.92, indicating robust performance

across different generative models. Based on these findings, we can conclude that current generative models exhibit a fundamental gap in

replicating projective geometry, and our derived geometry cues can reliably distinguish between real and synthetically generated images.

6. Evaluation

6.1. Dataset

Our evaluation consists of a diverse set of images, including:

Indoor Scenes: A collection of interior images featuring

a variety of furniture arrangements and lighting conditions.

These were sourced from LSUN (specifically Bedroom, Din-

ing Room, Kitchen, and Living Room) [45].

Outdoor Scenes: A dataset of outdoor environments

with varying landscapes and urban settings. These were

sourced from Berkeley Deep Drive 100K [46] and Mapillary

Vistas[29].

6.2. Classifiers Results

Figure 3 shows ROC curves for each method on indoor, out-

door and combined (indoor+outdoor) scenes. In each case,

classifiers are trained on images that are not prequalified

and tested on prequalified scenes, meaning that performance

estimates are biased low — likely training on prequalified

data would lead to even more accurate classification. Each

classifier is effective, with AUCs ranging from 0.72 to 0.97.

Recall these classifiers see only derived geometric features

and do not see the image itself.

Qualitative examples using Grad-CAM [39] appear in

Figures 4 and 5. Notice how images that might be acceptable

to a line analysis often fail a shadow analysis. Figure 6 shows

examples to emphasize this point.
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(d) PixArt-α Outdoor Test Set

Figure 8. ROC Curves for Outdoor Generated Scenes: The performance of our classifiers on outdoor test sets from Kandinsky-v2 (a),

DeepFloyd (b), Adobe Firefly (c), and PixArt-α (d). Across the datasets, our derived geometry cues consistently outperform the Prequalifier,

showcasing their robustness in distinguishing generated images with high accuracy (AUC > 0.90). Based on these findings, we can conclude

that current generative models exhibit a fundamental gap in replicating projective geometry, and our derived geometry cues can reliably

distinguish between real and synthetically generated images.

Copy-Paste
Traditional

Composites

ObjectStitch

Composites

Object-

Shadow (OS)
OS GradCam

Figure 9. Detecting Composite Errors with Object-Shadow (OS)

Cues. We show images directly taken from Figure 1 (teaser) of

[40]. Our OS cues effectively identify composite images, such

as those created by the recent SOTA insertion method [40], by

pinpointing inaccuracies in shadow orientation. The bottom row

provides a clear example where, despite the sun being positioned

behind the camera, the shadows are mistakenly cast to the right.

Also see the shadow of the adjacent object (marked in yellow),

which is pointing upward in the opposite direction. Similarly, in

the top row, shadows are cast in an implausible direction. The OS

GradCam visualizations on the right successfully highlight these

misdirected shadows.

7. Other Generators Evaluated

Our investigation primarily leverages the widely utilized and

open-sourced Stable Diffusion XL (SDXL) model [31] as

the training data for our classifiers. Our classifiers do not

see pixels, but derived geometric features. This means that

one could expect a form of generalization across generators.

We illustrate that this generalization occurs - ROC curves in

Figure 7 demonstrate that classifiers trained to distinguish

Stable Diffusion XL images from real images can also re-

liably distinguish Kandinsky-v2 [3], DeepFloyd [11] and

PixArt-α[8] from the open-source domain. Additionally, we

assess the efficacy of our models against images from propri-

etary generators such as OpenAI’s Dalle-3[4] and Adobe’s

Firefly [1], representing some of the most advanced tools

in image generation. Finally, we show we can detect com-

posite made by a recent SOTA method [28] by looking at

Object-Shadow cues in Figure 9.

8. Discussion

We have shown that generated images can be reliably dis-
tinguished from real images by looking only at derived
geometric cues. This is likely because image generators
do not fully implement the geometry one observes in real
images. Producing accurate perspective geometry or ac-
curate shadow geometry requires very tight coordination
of detailed information over very long spatial scales. Our
results, together with the notorious tendency of face im-
age generators to award subjects’ left and right earlobes
of different shapes, suggest that doing so is beyond the
capacity of current generators. We speculate that fixing
this difficulty requires structural innovation in the gener-
ator, rather than simply exposing the generator to more
data.
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Shadows Don’t Lie and Lines Can’t Bend!

Generative Models don’t know Projective Geometry...for now

Supplementary Material

9. Additional Analysis

In Table 2, we provide quantitative analysis that our Line

Segment cues and Perspective Field cues are correlated and

look at similar geometric cues while Object-Shadow cues

look for different geometric cues to identify if an image is

generated or real.

We also provide statistical distributions of geometry cues

leveraged for detecting projective geometry distortion. These

include Object-Shadow pairs, Perspective Fields, and line

segment distributions obtained from DeepLSD. The distribu-

tions are in Figures 13, 14, 15, 16, and 17.

An ROC plot in Figure 18 shows that while using sta-

tistical biases helps detect generated images over chance,

ResNet classifiers trained directly on these cues still outper-

form them.

Table 2. We quantify the distribution of detection agreement among

three types of cues: Line Segment (LS), Perspective Fields (PF),

and Object-Shadow (OS), for the images processed by Stable

Diffusion-XL. The output indicates whether each method can ac-

curately identify generated images as either real or generated. The

“Yes” indicates that the method has correctly detected generated

images, whereas “No” indicates that the method has identified gen-

erated images as real. We have also provided the absolute and

percentage values of images for both indoor and outdoor domains’

unconfident test set in the last two columns. The table reveals

a statistically significant correlation between Line Segment and

Perspective field cues (p-value ≈ 2e
−16), suggesting they are not

independent in their detection of generated images. Conversely,

Object-Shadow Cues demonstrate a different pattern of detection,

with the probability of identifying an image as generated being

lower than that of Line Segment Cues. This shows that they are

complementary and look at distinct discrepancies in the images. A

qualitative figure demonstrating a complementary capability is in

Figure 6 of the main text.

LS cues PF cues OS cues Indoor Outdoor

Yes Yes Yes 10520 (53.71%) 2382 (45.38%)

Yes Yes No 4844 (24.73%) 1314 (25.03%)

Yes No Yes 1033 (5.27%) 287 (5.47%)

Yes No No 725 (3.70%) 260 (4.95%)

No Yes Yes 872 (4.45%) 322 (6.13%)

No Yes No 874 (4.46%) 423 (8.06%)

No No Yes 285 (1.45%) 102 (1.94%)

No No No 435 (2.22%) 159 (3.03%)

12



Object-

Shadow 

Detector 

(SSISv2)
ResNet50

Input Image

Object Mask

Shadow Mask

Real or 

Generated?

Line 

Segment 

Detector 

(Deep LSD)

Object-Shadow 

Visualization

Perspective 

Fields

Perspective 

Fields 

Visualization

PointNet

Line Segments

Represented as start and end points

Gravity Map +

Latitude Map

End_Y1End_X1Start_Y1Start_X1

End_Y2End_X2Start_Y2Start_X2

…………

End_YnEnd_XnStart_YnStart_Xn

Line Segments 

Visualization

Real or 

Generated?

Real or 

Generated?

ResNet50

Figure 10. The schematic represents our pipeline, which begins by extracting geometric cues from images (left), such as object-shadow

associations (top), perspective fields (middle), and line segments (bottom). These cues serve as the data describing geometry of images

for training our classifiers. We utilize a ResNet architecture for Object-Shadow and Perspective Fields and PointNet for Line Segments in

processing unordered data sets (Right).
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Generated Image Object-Shadow (OS) OS GradCam Perspective Fields Perspective Fields GradCam

Figure 11. All interior scenes generated using Dalle-3. We analyze them using Object-Shadow (OS) cues and Perspective Fields (PF),

along with their respective GradCam visualizations. The OS GradCam highlights areas where shadow directions or lengths don’t appear to

match the scene’s lighting. For example, in the first and third rows, the shadows beneath the furniture don’t seem to fit the objects casting

them. The second row’s OS GradCam shows an unnatural shadow on the sofa that’s difficult to spot. Meanwhile, the PF analysis exposes

inaccuracies in line alignment and vanishing points. In the top and third rows, the PF GradCam highlights inconsistencies along the room’s

ceiling lines and window frames that don’t match the rest of the scene’s perspective geometry. In the second and fourth rows, it detects

inconsistencies on the side wall beneath the painting region.
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Generated Image Object-Shadow (OS) OS GradCam Perspective Fields Perspective Fields GradCam

Figure 12. The generated street scenes in Adobe’s Firefly have inconsistencies in projective geometry. We show Object-Shadow (OS) and

Perspective Fields (PF) analyses and have presented each generated image alongside the results. In the first row, the shadow of the bus on the

left is in one direction, while the shadow of the bus on the right and the pedestrian point is in opposite directions. The second row shows the

OS GradCam pinpointing a car’s shadow that is unrealistically elongated on one side. In the third and fourth rows, we observe pedestrians

with shadows that are inconsistent with the lighting. The Perspective Fields analysis in rows two and three detects line inconsistencies deep

in the scene and near vanishing points, while in the first and last rows, it captures discrepancies on the road markings and building facades.
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Figure 13. A statistical distribution analysis of a number of object-shadow pairs for both indoor and outdoor datasets. A classifier could

exploit some of the statistical biases to distinguish between generated and real images. However, we found that our derived geometry cues

perform much better than a classifier trained to look at such statistical signals, as shown in Figure 18. Furthermore, the GradCam analysis

indicates that these derived object-shadow cues correctly identify erroneous regions.
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Figure 14. This set of histogram plots displays the statistical distribution of perspective field metrics in indoor scenes, comparing the

training, validation, and test sets. The top row histograms reveal a significant difference in the distribution of latitude angles between

real and generated images. The middle and bottom row plots illustrate the mean X and Y components of gravity vectors in the images,

showing a clear separation between the real and generated images. These metrics indicate minor spatial inconsistencies between the real and

generated images. Although these basic statistical differences provide some discriminative power, they are less effective than our ResNet

classifier trained on Perspective Fields, which efficiently detects and focuses on critical geometric inconsistencies. This is validated by our

comprehensive ROC analysis in Figure 18.
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Figure 15. This set of histogram plots displays the statistical distribution of perspective field metrics in outdoor scenes, comparing the

training, validation, and test sets. The top row histograms reveal a significant difference in the distribution of latitude angles between

real and generated images. The middle and bottom row plots illustrate the mean X and Y components of gravity vectors in the images,

showing a clear separation between the real and generated images. These metrics indicate minor spatial inconsistencies between the real and

generated images. Although these basic statistical differences provide some discriminative power, they are less effective than our ResNet

classifier trained on Perspective Fields, which efficiently detects and focuses on critical geometric inconsistencies. This is validated by our

comprehensive ROC analysis in Figure 18.
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Figure 16. Line Segment Distribution in Indoor Scenes: We show the distribution of line segment counts and lengths in indoor scenes across

training, validation, and test sets. The histograms (top row) compare the number of line segments detected in real versus generated images,

with generated images generally exhibiting a different distribution, suggesting a discrepancy in line segment occurrence. The line segment

length plots (middle row) show the maximum length of line segments. The polar plots (bottom row) illustrate the mean line orientation

per image. While these basic statistical differences provide some discriminative power, they are notably less effective than our PointNet

classifiers, which demonstrate a profound ability to detect and focus on critical geometric inconsistencies, as validated by our comprehensive

ROC analysis in Figure 18.
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Figure 17. Line Segment Distribution in Outdoor Scenes: We show the distribution of line segment counts and lengths in indoor scenes

across training, validation, and test sets. The histograms (top row) compare the number of line segments detected in real versus generated

images, with generated images generally exhibiting a different distribution, suggesting a discrepancy in line segment occurrence. The

line segment length plots (middle row) show the maximum length of line segments. The polar plots (bottom row) illustrate the mean line

orientation per image. While these basic statistical differences provide some discriminative power, they are notably less effective than our

PointNet classifiers, which demonstrate a profound ability to detect and focus on critical geometric inconsistencies, as validated by our

comprehensive ROC analysis in Figure 18.
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Figure 18. ROC analysis comparing our classifiers against basic statistical cues on our full test set. We compare the performance of our

sophisticated classifiers – Object-Shadow (OS), Perspective Fields (PF) ResNet, and Line Segments (LS) PointNet classifiers – with basic

statistical measures applied via logistic regression (LR) on indoor, outdoor, and combined test sets shown in dotted lines. While basic

statistical cues like the count and mean lengths of line segments, the number of object shadows, and gravity changes per pixel indicate

better-than-chance performance (AUCs ranging from 0.58 to 0.75), they are eclipsed by the more robust classifiers we developed and also

the ResNet prequalifier. Our classifiers excel in identifying generated images with incorrect projective geometry by focusing on incorrect

regions, not just statistical cues, as demonstrated by GradCAM visualizations.
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